
ADM-WENO
scheme

461

International Journal of Numerical
Methods for Heat & Fluid Flow,

Vol. 9 No. 4, 1999, pp. 461-471.
# MCB University Press, 0961-5539

Received June 1998
Revised December 1998
Accepted January 1999

ADM-WENO scheme and its
application in compressible

mixing flows
Haidong Li and Weng Kong Chan

School of MPE, Nanyang Technological University, Singapore

Keywords Flow, High order

Abstract High order schemes, which are widely used in DNS and LES, received increasing
attention in recent years with a number of variants being developed. However most of these
schemes have difficulties in achieving high order accuracy near the boundary points. In order to
solve this problem, the analytical discrete method (ADM) is proposed and presented in this paper.
In addition, this method is convenient to construct the higher order WENO (weighted essentially
non-oscillatory) scheme. Application of the ADM-WENO scheme to shock-tube problems and
compressible mixing flows has shown it is robust and accurate in both shock-capturing and
complex flow structures detection.

Introduction
High performance computing (HPC) is enhanced by modern technologies such
as domain dividing, parallel computing and convergence speeding. Meanwhile,
using higher order schemes is another focus of the development of HPC. The
most significant advantage of using higher order schemes is that it can reduce
computing cost largely in solving multi-scale and high wave number problems
due to the reduction of grids. In addition, some small structures may not be
correctly detected by lower order schemes even if dense grids are used.

During the past two decades, a number of higher order finite difference
schemes have been developed and they can be classified into three methods.
The first type is a simple extension of the traditional finite difference method.
The high order formulae of the first order derivative were given by Fornberg in
1988. He has shown that it is essential to have n� 1 points to evaluate the first
order derivative with nth order of accuracy. Hence, it is difficult to compute
derivatives accurately on the boundary and near boundary points. The second
method uses half points information and reconstruction of control equations to
eliminate low order truncation errors. Schemes, such as Chawla's (1975) sixth
order iterative central difference scheme and Simos's (1993) two step scheme
belong to this method. These schemes were successfully applied on ordinary
differential equations and some simple partial differential equations such as the
one dimensional convection-diffusion equation. But it is impossible to be
extended to Navier-Stoke's equation due to its complicity. The last method is to
consider derivatives as unknown variables in the scheme construction
procedure. Most modern schemes, such as the compact scheme proposed by
Orszag (1974) and Lele (1992) and the super-compact scheme developed by Ma
and Fu (1995), enhance the scheme's order using this method. Applications of
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these schemes can be found in a number of recent publications, such as Halt
and Agarwal (1992) and Fu and Ma (1992). The limitation of compact and
super-compact schemes is that they have to use low order schemes on the
boundary points to close the solution procedure. Carpenter et al. (1993) and
Carpenter and Scherer (1995) studied this boundary treatment problem for high
order compact schemes and showed that it is very difficult to keep the scheme
stable when using the same order scheme on boundary points.

Higher order computational schemes are not limited to finite difference
methods. The spectral method, a well developed scheme, is widely used in
turbulent flow simulations with the advantage of high order accuracy and high
resolution. But it has difficulties in solving problems with complex geometry
and discontinuities. Although some of the newest developments, such as Shen
et al. (1997) can be used in discontinuity detection of the nonlinear Burgers
equation and the one-dimensional shock-tube problem, they are far away from
transonic compressible flow simulation.

Our research interest stems from the desire to establish a simple scheme,
which can determine various order derivatives with uniform accuracy within
the flow domain and boundary points. The scheme must also be easily adapted
in the construction of advanced flux computing schemes. In this way, we can
enhance the accuracy of the flux computing schemes and thus the solution of
fluid flow equations can be improved. In this paper, fundamental concepts of
the ADM will be introduced in the first section. This is followed by the
construction procedure of high order ADM-WENO scheme in the second
section. Finally, numerical tests of one-dimensional shock-tube problems and
application in compressible mixing flows are presented in section 3 to
demonstrate the capability of the new scheme. Results show that the ADM-
WENO scheme can detect discontinuities and complicated flow structures
accurately with high resolution.

1. Fundamental concepts of the analytic discrete method
As an example to explain the basic idea of ADM, consider an ordinary
differential equation, F�x; f ; f �1�; f �2�; � � � f �S�� � 0 where fxjg denote the
coordinates of mesh points, h denotes the grid length, ffjg are the function
values on the nodes for j � 1; 2 � � �N . The ADM with arbitrary order of
accuracy can be written as:

F�xj; fj; f
�1�
j ; � � � f �S�j � � 0Xm

s�0

Xk2

k�k1

��l
s;kh

sf
�s�
j�k� � 0

l � 1; 2 � � �m; j � 1; 2; � � �N

8>>>>><>>>>>:
�1�

where m is the number of auxiliary equations which is equal to the highest
derivative order. The number of scheme points equals �k2 ÿ k1 � 1�. And the
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highest accuracy order of the equation (1) equals �k2 ÿ k1��m� 1�. The
coefficients are �l

s;k determined by following equations from Taylor series
expansion. Pk2

k�k1

�l
0;k � 0

Pk2

k�k1

�k�l
0;k � �l

1;k� � 0

� � �Pk2

k�k1

km

m!�
l
0;k � kmÿ1

�mÿ1�!�
l
1;k � � � � � �l

m;k

� �
� 0

� � �Pk2

k�k1

kp

p! �
l
0;k � kpÿ1

�pÿ1�!�
l
1;k � � � � � kpÿm

�pÿm�!�
l
m;k

� �
� 0

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

�2�

Additional constraints are needed since equation (2) is a set of non-closed
equations of �l

s;k. Therefore various schemes can be obtained through choosing
different constraint parameters. For example, the standard compact scheme in
equation (3) can be obtained if we choose k1 � ÿ1, k2 � 1, m � 2, �1

0;0 � 0,
�1

1;0 � ÿ 2
3, �

1
2;ÿ1 � �1

2;1 � 0 and �2
0;0 � ÿ2, �2

1;ÿ1 � �2
1;0 � �2

1;1 � 0.

1
2 �fj�1 ÿ fjÿ1� ÿ 1

6 h�f �1�j�1 � 4f
�1�
j � f

�1�
jÿ1� � 0

fj�1 ÿ 2fj � fjÿ1 ÿ 1
12 h2�f �2�j�1 � 10f

�2�
j � f

�2�
jÿ1� � 0

(
�3�

However, we cannot consider boundary treatment simultaneously if we choose
constraint parameters in this way. To meet stability requirements, the energy
integration by parts principle suggested by Carpenter (1993, 1995) is applied
here to assist the choice of constraint parameters. For completeness, we simply
describe the theory as follows.

The semi-discretization system, @ f̂
@t
� a

�x
Pÿ1Qf̂ � 0, satisfies the

summation-by-parts energy norm and it is linearly stable if P and Q satisfy

(1) Symmetric P : pij � pji;

(2) Positive definite P : WTPW > 0;

(3) Nearly skew-symmetric Q : qij � qji � 2�i1�1j � 2�iN�Nj;

(4) qNN � ÿq11 � 1
2.

In fact, the product of matrix P and Q is the first order derivative calculation
matrix. Thus the construction of the ADM scheme is changed to determine
matrices P and Q through solving those coefficients in equation (2) according to
the above principle. In this paper, we illustrate the third order and fifth order
schemes while other order schemes can be found in Li (1997).
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In the third order scheme,

P3 �

1=4
1=8 0 0

1=8
5=4 ÿ1=4 0

0 ÿ1=4
5=4

1=8
0 0 1=8

1=4

26664
37775; Q3 �

ÿ1=2
11=16 ÿ1=4

1=16
ÿ11=16 0 15=16 ÿ1=4

1=4 ÿ15=16 0 11=16
ÿ1=16

1=4 ÿ11=16
1=2

26664
37775

And in the fifth order scheme,

P5 �

1 28
31 ÿ 25

93 0 0 0
28
31

2251
279 ÿ 506

93
395
93 ÿ 370

279 0

ÿ 25
93 ÿ 506

93
514
31 ÿ 1006

93
395
93 0

0 395
93 ÿ 1006

93
514
31 ÿ 506

93 ÿ 25
93

0 ÿ 370
279

395
93 ÿ 506

93
2251
279

28
31

0 0 0 ÿ 25
93

28
31 1

266666664

377777775;

Q5 �

ÿ 384
155

773
186 ÿ 866

279
67
31 ÿ 82

93
407
2790

ÿ 773
186 0 731

93 ÿ 598
93

671
186 ÿ 82

93
866
279 ÿ 731

93 0 2518
279 ÿ 598

93
67
31

ÿ 67
31

598
93 ÿ 2518

279 0 731
93 ÿ 866

279
82
93 ÿ 671

186
598
93 ÿ 731

93 0 773
186

ÿ 407
2790

82
93 ÿ 67

31
866
279 ÿ 773

186
384
155

266666664

377777775
We observe that it still has the limitation at nth order scheme needs �n� 1�
points. However, now not only the calculation procedure is simplified to a
narrow bandwidth matrix operation, but also it can deal with boundary points
without any difficulty. The higher order derivatives can also be evaluated by
repeating the same matrix operation. For example,

f �1�
n o

� Pÿ1Q ff g

f �2�
n o

� Pÿ1Q f �1�
n o �4�

2. Construction procedure of ADM-WENO scheme
The WENO scheme developed by Liu (1994) is a modified version of ENO
schemes. Compared to the traditional ENO schemes proposed by Harten (1989),
there is no need to choose the smoothest stencil to construct the interpolating
polynomial in the ENO flux reconstruction procedure. Since it considers all the
candidates to achieve the essentially non-oscillatory property, the
computational efficiency can be improved greatly. Unfortunately, it has the
same problem with boundary treatment because more computing points will be
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involved when we increase the accuracy order. Here we reformed the numerical
fluxed calculation with ADM formulae so that it can keep the original accuracy
order on boundary points.

The rth order ADM-WENO flux of scale equation @u
@t
� @f

@x
� 0 can be written

as:

~f�j�1=2 �
X1

s�ÿ1

Wspj�s�xj�1=2�

pj�s�x� �
Xrÿ1

k�0

1

k!
�@

kf

@xk
�j�s�xÿ xj�s�k

�
X�rÿ1�=2

k�1

C2k� @
2kf

@x2k
�j�s�xÿ xj�s�2k � O�hr�1�

s � ÿ1; 0; 1

�5�

Where C2k are ENO correcting coefficients determined by the following
equations.

1
22�3!
� C2

20�1!
� 0

1
24�5!
� C2

22�3!
� C4

20�1!
� 0

1
26�7!
� C2

24�5!
� C4

22�3!
� C6

20�1!
� 0

� � �
1

22c��2c�1�!� C2

22�cÿ1���2cÿ1�!� � � � � C2cÿ2

22�3!
� C2c

20�1!
� 0

8>>>>><>>>>>:
�6�

The first three items can be found easily, C2 � ÿ 1
24, C4 � 7

5760 and C6 � ÿ 31
967680.

Ws � �s

�"�ISs�q is weight factor. Parameter �s and q are chosen as �ÿ1 � 1
10,

�0 � 6
10, �1 � 3

10 and q � 2 according to Liu et al. (1994). ISs is the smoothness
indicator of the sth interpolation polynomial, which is defined as:

ISs �
Xrÿ1

l�1

Z j�1=2

jÿ1=2

�p�l�j�s�x��2h2lÿ1 � dx; s � ÿ1; 0; 1; �7�

Substituting equation (5) into (7), and choosing , we obtain

ISÿ1 � 13
12 h4�f �2�jÿ1�2 � �h2f

�2�
jÿ1 � hf

�1�
jÿ1�2

IS0 � 13
12 h4�f �2�j �2 � �hf

�1�
j �2

IS1 � 13
12 h4�f �2�j�1�2 � �h2f

�2�
j�1 ÿ hf

�1�
j�1�2

8>><>>: �8�

f
�1�
j�s and f

�2�
j�s will be calculated using ADM formulae described in the above

section. The negative flux ~fÿjÿ1=2 can be constructed in the same way as long as
we substitute xjÿ1=2 instead of xj�1=2 in equation (5).
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When we apply these formulae to the Navier-Stoke's equation, characteristic
projection is needed to eliminate non-physical oscillations. That means all the f
in equation (4) to (8) should be changed to characteristic variables fc � L � f ,
and after reconstruction, the numerical fluxes in the characteristic field have to
be inversely projected to the physical domain by f � fc � R. L and R can be
evaluated from the Jacobian matrix A � @f

@U
� L�R.

3. Numerical experiments
In order to demonstrate the validity and capability of the present scheme, two
one-dimensional shock-tube problems are chosen as test examples.

3.1 Shock-tube 1
We consider the following Riemann problem

U0�x� � UL ; x < 0
UR ; x > 0

�
;U � ��; �u; �e� �9�

Here UL � �1:; 0:; 1:� and UR � �0:125; 0:; 0:1�. We test our scheme with r � 3.
Figure 1 shows the curves of pressure, velocity and density distribution in the
tube. We observed that the numerical solution is smooth in the discontinuous
area with high resolution. The shock wave can be accurately captured by 1 grid
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Figure 1.
Pressure, velocity and
density distribution of
shock-tube 1
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cell. This result is much better than the result of the second order TVD scheme
developed by Wu (1989), and the ADM-ROE scheme developed by Li et al.
(1996).

3.2 Shock-tube 2
It is a similar problem as 3.1, but with different initial boundary conditions.

�L � 3:857; uL � 2:629; pL � 10:333; x < ÿ4
�R � 1� 0:2 sin�5x�; uR � 0; pR � 1; x � ÿ4

�
�10�

Although this example cannot be solved analytically, it is a typical test
problem of high order schemes because the wave shape is closely related to the
diffusion characteristics of various schemes. As shown in Figure 2, the
numerical results of present scheme at t � 1:8s is identical with those of other
higher order schemes such as Huynh's scheme (1995) and the time-space
conservative scheme by Wang and Chow (1996).

3.3 2D mixing flow
The investigation of compressible mixing flows was motivated by the
development of ramjet because combustion efficiency is largely dependent on
the mixing level of fuel and oxygen. Compressibility can have strong effects on
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the development of mixing layers, see Sandham (1994) and Soetrisno et al.
(1989). The most well known feature of the compressible mixing layer is the
reduction in growth rate. In this paper, investigations are made into the
mechanisms affecting the vortex pairing process.

The simulations are made for a temporally evolving mixing layer with equal
and opposite free stream velocities and equal free stream densities. The
nondimensionalized initial velocity profile is given by �u � tanh�2y�, and initial
temperature is given according to the Crocco-Busemann relation

�T � 1�  ÿ 1

2
M 2

c �1ÿ �u2� �11�

Here Mc is the convection Mach number of the flow. For this case Mc � U1=a,
where U1 is the free stream velocity and a is the free stream sound speed.
Pressure is assumed to be uniform at the inlet. Nondimensional dynamic
viscosity is set to � � T2=3 and Reynolds number is set to 2000 based on the
inlet velocity and length of the computational domain. To force the pairing
process, disturbances consisting of a fundamental and a sub-harmonic wave
are added to the initial mean velocity profiles as follows.

u
0 � ÿA1

yLx

2�B
cos

4�x

Lx

� �
exp

ÿy2

B

� �
ÿ A2

yLx

�B
cos

2�x

Lx

� �
exp

ÿy2

B

� �
v
0 � A1 sin

4�x

Lx

� �
exp

ÿy2

B

� �
� A2 sin

2�x

Lx

� �
exp

ÿy2

B

� � �12�

This provides a standard divergence-free disturbance to the mixing layer with
a phase of zero between the fundamental and sub-harmonic wave. And the
pairing is excited most efficiently due to this disturbance. The amplitudes are

Figure 3.
Vorticity contours of
Mc = 0.2
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chosen to be A1 � 0:05 and A2 � 0:025. The parameter B was set to ten.
Length of the computational domain is specified as Lx � 20 and Ly � 20. Grid
size of 129�101 and third order ADM-WENO scheme are used in the
simulation. Figures 3, 4 and 5 show the overall shear layer evolution procedure
with different Mach numbers. Figure 6 shows the comparison of vorticity

thickness (defined as � � U1ÿU2

�@u=@y�max

) development history of different

Figure 4.
Vorticity contours of

Mc = 0.4

Figure 5.
Vorticity contours of

Mc = 0.8
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convection March number. We observe that not only the mixing layer growth
rate is strongly affected by the Mach number, but also the shape and the
rotating speed of vortex pairs are different. In the case of Mc � 0:8, vortexes
are broken and shock waves appear when t > 125. It coincides with the
common knowledge that shock waves may appear when Mc > 0:75.

4. Conclusion remarks
A numerical method (ADM) of derivative calculation with consideration of
boundary treatment has been developed. At mean time, three examples of
ADM and the construction procedure of ADM-WENO scheme are presented in
this paper. Reasonable results from numerical tests and compressible mixing
layer simulations have shown that the ADM-WENO scheme is an accurate
scheme for compressible flow simulation with high resolution.
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